2) WRF/CMAQ を用いた PM2.5の発生源寄与解析

ーPMF モデルによる発生源寄与との比較-

古澤尚英*1 板橋秀一*2 豊永悟史*3 出納由美子

要旨

熊本県の PM_{2.5}主要発生源および越境・地域汚染の影響を把握するために, 化学輸送モデル CMAQ を用いて 2014 年冬季の熊本県を対象とした発生源寄与 を求めた。PMF モデルによる発生源寄与と比較したところ,越境汚染の寄与に ついて有意な相関が得られ,両モデルの結果の妥当性が支持された。PMF の「2 次生成硝酸塩+塩化物」因子は CMAQ の「九州」寄与と有意な相関が得られた が,宇土と益城で相関が違い,このことは NH₃の地域汚染と類似性がみられた。

キーワード:微小粒子状物質, WRF/CMAQ, PMF, 発生源寄与

はじめに

2013 年に, 疫学調査で健康影響が指摘されている微 小粒子状物質 ($PM_{2.5}$) について,中国における現状と 日本への越境汚染が報道されてから,日本でも $PM_{2.5}$ に対する関心が高まってきている。特に九州において はその影響が大きいことが指摘されており¹⁾,これま で多くの研究が行われている^{2)~4)}。以前までは自動測 定機による $PM_{2.5}$ 質量濃度の常時監視を目的として観 測が行われてきたが,2013 年度より全国の自治体で成 分調査が行われるようになり,地域ごとの汚染の特徴 が明らかになりつつある⁵⁾。

このような背景から,全国の自治体と同様に,熊本 県でも PM_{2.5}の発生源寄与の把握に取り組み, PM_{2.5}の 削減に向けた研究を行っている^{4).6}。統計的手法を用 いたレセプターモデルによる評価もその一つであり, これによると熊本では,越境汚染だけでなく地域汚染 による影響もみられ,特に自動車による排出が地域間 の濃度差を生み出している要因であると報告されてい る⁶。

本研究では、熊本県の汚染状況を把握することを目 的とし、メソ気象モデル Weather Research and Forecasting modeling system⁷⁾ version 3.4.1 (以下,「WRF」 という。) と化学輸送モデル Community Multi-scale Air

*1現 環境生活部環境保全課 *2(一財)電力中央研究所

Quality Modeling System⁸⁾ version 4.7.1 (以下,「CMAQ」 という。)を用いて,試験的に発生源寄与の感度計算を 行った⁹⁾。これにより,観測だけでは把握することが できない PM_{2.5}などの大気中 3 次元空間濃度分布を推 定することができる^{10),11)}。この結果⁹⁾ と先に報告さ れている Positive Matrix Factorization¹²⁾ (以下,「PMF」 という。)などのレセプターモデルによる発生源寄与解 析の結果⁶⁾を比較したので,その結果を報告する。な お,本研究で使用したモデル計算結果は,PMF は豊永 ら⁶⁾のデータを利用しており,WRF/CMAQ は古澤ら ⁹⁾のデータを利用している。

方法

1 モデルの初期値および再現性比較に使用したデー タ・解析期間

PMFは、実測値をもとにした統計解析により発生源 寄与を計算するモデルであるため、初期値として N=100以上の PM_{2.5} 質量濃度および成分濃度の実測値 が必要となる。一方で、WRF/CMAQ には初期値とし て実測値は必要ないが、計算結果の妥当性を判断する ために、計算値と実測値と比較する必要がある。

PMFの計算には、以下に示す成分濃度および質量濃度について 2013 年度~2014 年度のデータを使用した。

*3環境生活部環境保全課

シュと調査地点

環境省作成のガイドラインおよびマニュアルに従って 実施された^{13),14)} 熊本県の5地点(宇土運動公園局, 益城町役場局,神水本町自排局,水道町自排局,天明 局;以下,それぞれ「宇土」,「益城」,「神水」,「水道 町」,「天明」という。)と,福岡県の2地点(福岡市役 所局,太宰府局;以下,それぞれ「福岡市」,「太宰府」 という。),長崎県の離島2地点(国設五島酸性雨測定 局,国設対馬酸性雨測定局;以下,それぞれ「五島」,

「対馬」という。)の9地点について(図1),PM_{2.5}成 分調査結果のイオン成分,無機成分のデータを使用し た。PM_{2.5}質量濃度は、神水、水道町,天明,五島およ び対馬で,環境省のマニュアル¹⁵⁾に従った標準測定 法により測定されたデータを使用した。宇土,益城, 福岡市および太宰府については,試料採取時間に合わ せた23時間のPM_{2.5}自動測定機による常時監視データ の1時間値を使用した。

WRF 気象場の再現性検証には, 熊本地方気象台による観測データ¹⁶⁾を使用した。また, CMAQ の再現性検証には, 神水, 福岡市, 対馬および五島の成分調査結果および PM_{2.5} 自動測定機による常時監視データを用いた。

解析期間は 2014 年冬季の PM_{2.5}成分調査期間である 2014 年 1 月 22 日~2 月 4 日とした。

2 WRF/CMAQの計算条件

WRF および CMAQ は Linux OS 上で動作するソフト ウェアで, 無償で使用することができる。本研究では, CPU: Core-i7 (8 core), RAM: 16GB の性能のコンピ ュータに Linux ディストリビューションの Ubuntu 16.04 LTS をインストールして計算環境を構築した。

計算条件は古澤ら⁹⁾により,ゼロアウト法を用いた感 度解析から,発生源寄与割合を計算した。ゼロアウト 法とは,通常計算(Base)と,目的の排出量データを 全てゼロにした計算をそれぞれ行い,それらの差分を とることで目的の発生源からの影響を求める方法であ る¹¹⁾。

発生源には、古澤ら⁹⁾に指定されている5つ(熊本 県内人為起源(Kumamoto),熊本県以外の九州人為起 源(Kyushu),有明・八代・天草海域船舶起源(Ship) および日本の火山(Vol.)に分類し、それ以外をここ では簡易的に国外(Abroad)とする)に設定した。更 に、Kumamotoは発生源種別について、燃焼起源 (Comb.[Ku];産業廃棄物処理を含むすべての産業、

発電所などの燃料消費に該当する業種からの排出),自 動車起源(Aut.[Ku];すべての自動車,車両からの排 出)および農畜産起源 Agri.[Ku];肥料施肥,家畜排泄 による排出)に細分類し,それ以外をその他(other[Ku]) とした。

排出量データは、電力中央研究所の板橋氏に作成を 依頼した。計算領域は図1に示すとおりであり、その 他の計算条件については表1に示す。なお、次節以降 のWRF/CMAQの結果において、宇土、益城、神水、 水道町および天明に該当する計算領域は「熊本県中心 部」と表記する⁹。

3 PMF モデル

豊永ら⁶の解析条件は次のとおりである。PMFモデ ルには、EPA-PMF5.0 を使用して解析を行い、因子数 を6に設定して計算を行ったところ、抽出された因子 は、①2次生成硫酸塩; SO₄²⁻と NH₄⁺の濃度が高く、

モデル	WRF-ARW v3.4.1	CMAQ v4.7.1					
計算領域	D1:東アジア域 (81km×81km), D2:中国東部~日本域 (27km×27km) 計算中心:30°N, 115°E, 地図投映法:Lambert conformal conic						
計算期間	2014/1/15 9:00~2014/2/14 9:00 (解析期間は2014/1/22 10:00~2014/2/5 9:00)						
鉛直格子数	37層(地表~50hPa)						
入力データ	 ・土地利用 :USGS ・気象解析値: NCEP FNL最終解析データ(1°×1°) ・海水面温度: NCEP RTG-SST-HI(0.083°×0.083°) ・気象観測値: NCEP ADP地表面気象観測データ 	 ・気象データ: WRF計算値 ・排出量データ 人為起源: REASv2.1 バイオマス燃焼: GFEDv3.1 植物起源: MEGAN 火山起源: ACESS, 気象庁火山データ 					
計算条件	PBL scheme : Mellor Yamada Janjic (eta) tke scheme Analysis nudging : Wind (G_{uv} =D1; 3.0 ⁻⁵ s ⁻¹ , D2; 1.0 ⁻⁵ s ⁻¹) Surface : Noah LSM Surface nudging : Wind (G_{uv} =D1; 3.0 ⁻⁵ s ⁻¹ , D2; 1.0 ⁻⁵ s ⁻¹)	MCIP: version 4.1 Gas phase chemistry: saprc99 (ebi) Aerosol: AERO5 その他初期値及び境界条件はCMAQデ フォルト設定					
感度解析 [※] CMAQ ゼロアウト法	 ・熊本県内人為起源:Kumamoto 熊本県内燃焼起源:Comb.[Ku] 熊本県内自動車起源:Aut.[Ku] 熊本県内農畜産起源:Agri.[Ku] 熊本県内その他人為起源:other[Ku] ・熊本県以外の九州人為起源:Kyushu ・有明・八代・天草海域船舶起源:Ship ・日本の火山起源:Vol. ・国外起源:Abroad ※九州以外の日本国内人為起源と火山以生的に国外とする。 	u] 外の自然起源も含まれるが、ここでは簡易					

表1 WRF および CMAQ の計算条件

中国など東アジアにおける石炭燃焼の影響,②炭素性 エアロゾル; EC と OC の濃度が高く,道路交通由来の EC や 2 次生成 OC の影響,③土壌; Al, Fe, Ca, Mn 等の無機成分濃度が高く,黄砂などの土壌粒子の影響, ④石油燃焼; V, Ni の相対比が高く,船舶や工場にお ける石油燃焼の影響,⑤海塩(クロリンロス); Na, Mg などの海水に多く含まれる成分の相対比が大きく, 海塩の影響,⑥2 次生成硝酸塩+塩化物; NO₃ と CIの 相対比が大きく,半揮発性を持つ粒子の影響,という 結果であった。

4 フィルターパック法

大気中の粒子状成分およびガス状成分を把握するために、フィルターパック法を用いて調査を行った。粒子状物質およびガス状物質を捕集するろ紙は、全国環境研協議会の第5次酸性雨全国調査報告書(平成25年度)¹⁷⁾に従って4段ろ紙を作成した。サンプリング

の吸引速度は約 6L/min で行った。回収したろ紙は超純水で抽出し、イオンクロマトグラフ(Dionex DX-500)を用いてイオン成分の分析を行った。サンプリング期間は 2016 年 1 月 23 日~2 月 3 日とした。フィルターの交換は、宇土については 1 日ごと、益城については 3~4 日ごとに行った。

結果と考察

ここではまず,古澤ら⁹⁾による WRF/CMAQ の計算 結果についての再現性の検証を示し,その後, PMF と CMAQ のモデルの結果について比較を行う。

1 WRF/CMAQ について

1.1 気象場の再現性

気温,相対湿度および水平風速について,熊本地方 気象台の実測値と WRF による熊本県中心部の計算値 を比較した結果を示す(図2)。気温と湿度については

図 3 PM_{2.5}質量濃度の CMAQ (Model) と常時監視測定 局 (Observation) の比較

日内変動を再現できており,良好な再現性を有してい た。一方で,水平風速は一部期間を除いてモデルが過 大になっていたが,これは,熊本県中心部の領域は海 域を含んでいることが要因と推測された。

1.2 PM_{2.5}濃度の再現性

神水,福岡市,対馬および五島における PM_{2.5} 質量 濃度の1時間値と主要成分濃度の日平均値について再 現性の検証を行った(図3,図4)。検証には板橋と速 水¹⁰⁾で示されている相関係数(R), Mean Fractional Bias

(MFB)および Mean Fractional Error (MFE)を用いた。 MFB と MFE は以下の計算式にて求めた。

MFB =
$$\frac{2}{N} \sum_{i=1}^{N} \frac{(M_i - O_i)}{(M_i + O_i)} \times 100$$

MFE =
$$\frac{2}{N} \sum_{i=1}^{N} \frac{|M_i - O_i|}{(M_i + O_i)} \times 100$$

ここで*i*は指定の時間, M_i は*i*時におけるモデルの計 算値, O_i は*i*時における実測値, Nはデータ数を示す。 この定義により MFB; -200%~+200%, MFE; 0%~ +200%の範囲の値をとる。MFB と MFE は, モデルを 科学的知見の拡充や規制対策などに十分適用可能な performance goal (MFB $\leq \pm 30$ %, MFE $\leq \pm 50$ %) と, そ れらへの適用が妥当だとみなせる performance criteria (MFB $\leq \pm 60$ %, MFE $\leq \pm 75$ %) が提唱されており, こ の指標に沿って再現性を検討した¹⁸)。

PM_{2.5} 質量濃度については MFB; -29.2%~-6.3%, MFE; 43.5% ~ 54.7% であり, すべての地点で performance criteria を満たしており,発生源寄与解析に 適用可能な再現性を有していた。

 $PM_{2.5}$ の主要成分濃度は、硝酸塩 (NO_3) 、硫酸塩 (SO_4^{-2}) 、アンモニウム塩 (NH_4^+) 、元素状炭素 (EC)、 有機炭素 (OC) について、実測値とモデル計算値の日 平均値について再現性の検証を行った。検証には、デ ータを熊本県 (宇土、益城、神水)、福岡県 (福岡市、 太宰府) および離島 (対馬、五島)の3つの地域に分 類して行った。この結果, SO_4^{-2} (MFB; -47.2% ~ -43.1%, MFE; 46.6% ~ 58.7%) は全ての地点で performance criteria を満たしていた。また、 NH_4^+ (MFB; -52.8% ~ -18.4%, MFE; 29.3% ~ 56.2%) についても全ての地域 で performance criteria を満していた。 NO_3 は熊本県

(MFB; 17.1%, MFE; 61.1%) および福岡県(MFB; 7.0%, MFE; 65.3%) は performance criteria を満たして いた。離島の EC (MFB; -36.4%, MFE; 45.1%) およ び OC (MFB; -55.6%, MFE; 65.1%) については performance criteria を満たしていたが, 熊本県および福 岡県は有意な再現性が得られなかった。炭素成分につ いては, 既報^{9), 10), 19)} のとおり, モデルによる過小評 価が指摘され, 検討が行われている。従って, 次節以 降の感度解析について炭素成分は発生源からの感度が 過小に評価されていることに留意する必要がある。

1.3 発生源寄与

古澤ら⁹⁾による, 熊本県中心部における解析期間中 発生源寄与割合を表 2 に示す。表中の数字(%)は Base の濃度における割合を示し, Kumamoto は Comb.[Ku], Aut.[Ku], Agri.[Ku]および other[Ku]の合計値として示

図4 PM_{2.5}主要成分濃度の CMAQ (Model) と実測値 (Observation) の比較

している。

質量濃度で最も感度が大きかったのは Abroad の約 74%であり, Kumamoto は約 22%であった。Kumamoto の内訳ではAgri.[Ku]とAut.[Ku]が大きな割合を占めて おり,特に Agri.[Ku]は Kumamoto の約 70%と大きな割 合を占めていた。シミュレーションモデルを用いた研 究による発生源寄与の結果では、モデルの種類に関係 なく、地域汚染では自動車の走行による影響が大きな 割合を占めていると報告されている^{6),10),11)}が,本研 究の解析期間は冬季の限定していることから,これら の報告とは異なった結果になったと古澤ら⁹⁾は報告し ている。主要成分濃度は質量濃度の約70%を占めてお り, SO₄²⁻が最も高く, 寄与割合では約 96%が Abroad であった。SO42-は主に化石燃料の燃焼で排出され、日 本に比べ中国からの排出量が多く、冬季においては、 SO4²⁻が中国からの越境汚染の指標の一つとされてい る。これらのことから,豊永ら⁴⁾が報告しているよう に,解析期間中は大規模な越境汚染があったことが示 唆された。NO₃と NH₄⁺は Kumamoto からの寄与が大き く,特に Agri.[Ku]が大きな割合を占めていた。EC と OC は Abroad の割合が大きいが, 熊本県内でも Aut.[Ku]に EC が約 18%, OC が約 3%の寄与がみられ た。また、炭素成分は過小評価であることを考慮する と、熊本県内の発生源の中では、炭素成分は自動車排 ガスに最も影響を受けていることが示唆された。

2 PMF モデルとの比較

PMFモデルについては,豊永ら⁶が行った研究から, 解析期間における各因子の日平均値を検証に用いた。

2.1 PMF モデルによる発生源寄与の推定結果

本節では、豊永ら⁶⁾が行った PMF の発生源寄与解 析結果の根拠を説明する。図5に宇土、益城および五 島における PMF の発生源寄与の時系列変化を示す。こ の結果では、2次生成硫酸塩、石油燃焼および海塩(ク ロリンロス)は、宇土および益城に比べて五島の割合 が高い結果であった。これらの因子は、中国などアジ ア諸国からの越境汚染、海上船舶および海上からの排 出が大きい因子であることから、中国に近い位置にあ り、周囲を海に囲まれた五島ではこれらの排出の影響 が、宇土および益城よりも大きく表れたのだと推測さ れた。一方で、炭素性エアロゾルおよび2次生成硝酸 塩+塩化物は、五島よりも宇土および益城の濃度が高 い結果であった。また、五島では九州本土に比べて人

		PM _{2.5}	NO ₃ -	SO42-	$\mathrm{NH_4^+}$	EC	OC
Mass Concentration (µg/m ³)		21.53	3.23	6.17	3.11	0.82	1.78
Contribution	Abroad	73.7	14.6	96.2	48.4	74.3	95.7
ratio (%)	Kyushu	3.3	6.3	1.7	7.1	4.2	0.9
	Vol.	0.5	0.0	1.4	0.6	0.0	0.0
	Ship	0.2	0.9	0.0	0.3	0.0	0.0
	Kumamoto (sum total)	22.4	78.1	0.7	43.6	21.5	3.4
	Comb.	[Ku] 0.6	1.8	0.3	0.9	0.2	0.1
	Aut.[K	[u] 3.5	11.2	0.0	3.9	18.2	2.7
	Agri.[I	Ku] 16.2	66.7	0.0	35.9	0.0	0.0
	other[H	Ku] 2.0	-1.6	0.4	3.0	3.1	0.6

表 2 CMAQによる解析期間中の発生源寄与割合

図 5 PMF による解析期間中の発生源寄与の時系列変化

為排出が少なく、地域汚染は少ないとされていること から、炭素性エアロゾルおよび 2 次生成硝酸塩+塩化 物は主に地域汚染が強い因子であることが示唆された。 土壌は、益城および五島に比べて宇土の濃度が高い結 果であった。土壌は黄砂などの土壌由来の無機元素の 指標とされているが、本研究の解析期間に黄砂は確認 されておらず²⁰⁾、越境/地域汚染の影響を断定するこ とはできなかった。これらのことから、本研究では越 境汚染の因子;2次生成硫酸塩,石油燃焼および海塩 (クロリンロス),地域汚染の因子;炭素性エアロゾル および2次生成硝酸塩+塩化物,それ以外の因子に土 壌を分類した。

2.2 モデルによる発生源寄与の比較

本節では、PMF と CMAQ による発生源寄与の結果 について日平均値で比較を行い、モデル間での越境・

図 6 PMF および CMAQ の発生源寄与の日平均値による比較

		2次生成 硫酸塩	炭素性 エアロゾル	土壌	石油燃焼	海塩 (クロリンロス)	2次生成 硝酸塩+塩化物
宇土	国外	<u>0.73</u>	0.18	0.20	<u>0.62</u>	<u>0.63</u>	-0.14
	九州	0.13	0.13	0.06	0.10	-0.04	<u>0.58</u>
益城	国外	<u>0.74</u>	0.21	0.25	<u>0.67</u>	<u>0.61</u>	0.15
	九州	0.05	0.12	0.0.3	-0.10	0.05	<u>0.85</u>

表3 CMAQの発生源寄与とPMFの因子との相関関係

下線部はR > 0.5, p < 0.05の値

源寄与の日平均値

地域汚染の評価の違いについて述べていく。まず、発 生源寄与の日平均値について, PMFの宇土, 益城及び 五島と、CMAQの熊本県中心部の結果を図6に示す。 前節で示したとおり、五島は宇土および益城に比べて 2次生成硫酸塩,石油燃焼及び海塩(クロリンロス) の割合が大きく、国外からの影響を強く受けている。 宇土および益城の炭素性エアロゾルおよび2次生成硝 酸塩・塩化物濃度は、日によってばらつきはあるもの の、10~20µg/m³の濃度を推移しており、越境汚染が あった 1/30~2/3 の期間においても、同様の濃度レベ ルを推移していた。このように、宇土および益城では 一定濃度の地域汚染があり、この濃度に越境汚染の影 響が加算されている結果であった。一方で、CMAQの 感度解析では、解析期間中の Abroad の感度が 60~80% であり,地域汚染である Kyushu, Kumamoto および Ship の濃度を合わせても 10µg/m³以下で,寄与割合は日に よって大きく変化していた。これらの結果から, PMF と CMAQ で得られる発生源寄与には大きな違いが見 られた。

CMAQ のゼロアウト法による結果は、任意の地域の 排出量をゼロにして計算する手法であるため、ゼロア ウト法を適用した地域の寄与割合を定量的に求めるこ とができる。一方で、PMF 解析は PM_{2.5}成分濃度の割 合から排出源を推定する手法であるため、発生地域を 特定する方法ではない。古澤ら⁹⁰の CMAQ の発生源寄 与は、九州各県と熊本県を区別して計算しており、ま た、熊本県は4つの発生源に再分類していることから、 CMAQ の計算結果をそのまま PMF の結果と比較する ことは難しいと推測された。そのため、モデルの結果 について比較するにあたり、CMAQ の発生源寄与は国 外 (Abroad) および九州 (Kyushu + Kumamoto + Ship) の 2 つの寄与として、発生地域に曖昧さを持たせて PMF の結果と比較を行った。

次に、宇土および益城について、PMF の因子と CMAQの感度解析について、日平均値の相関係数(R) を表3に示す。表中の下線はR>0.5, p<0.05の数値 を示している。これより,2次生成硫酸塩(0.73~0.74), 石油燃焼(0.62~0.67)および海塩(クロリンロス)(0.63 ~0.61)について国外との有意な相関があり、宇土お よび益城の地域間で相関係数に大きな差は見られなか った。2次生成硝酸塩+塩化物と九州についても相関が あり,地域汚染が影響していると推測された。しかし, 宇土(0.58)と益城(0.85)で相関係数が大きく異な っており、この因子については後述するように地域差 が見られた。炭素性エアロゾルおよび土壌は、国外お よび九州のどちらとも相関がなかった。このことにつ いて, CMAQ の炭素成分は実測値に比べて過小で十分 に再現されていないことから,本研究の CMAQ および PMFの結果を比較することは容易ではない。また、土 壌因子については図5および2.1節で示したとおり, 地域の特徴が明確ではなく, 越境/地域汚染に分類する ことができなかった。これらのことから、炭素性エア ロゾルおよび土壌因子について,これ以上の PMF と CMAQ の結果の比較は本研究では行わないこととす る。

次に、2次生成硝酸塩+塩化物因子について詳細な検 証を行う。図7に CMAQ の国外および九州の PM_{2.5} 質 量濃度と、PMF の宇土および益城の2次生成硝酸塩+ 塩化物因子についての日平均値を示す。九州と益城は 似た挙動であり、濃度レベルもほぼ同じであった。宇

図8 CMAQによる地上付近の PM_{2.5} 質量濃度期間平均値 (a) 2014/1/22~1/29, (b) 2014/1/30~2/4

表 4 フィルターパック法による宇土および益城の測 定結果 (2015/1/23~2/3)

	NO ₃ -	Cl	$\mathrm{NH_4}^+$	HNO ₃	HCl	NH ₃
宇土	3.05	0.95	2.55	0.67	0.50	0.88
益城	4.82	0.90	3.10	0.34	0.34	2.99
Unit; $\mu g/m^3$						

土は 1/22~1/29 の期間は、益城および九州と同じ濃度 レベルであったが、1/30~2/4の期間は九州に比べて宇 土の濃度レベルが低い結果であった。解析期間は 1.3 節で示した通り越境汚染が強い期間であり, また, CMAQ による地上付近の PM2.5 質量濃度平均値分布を 示した図8から、熊本県の西側地域では越境汚染が広 範囲に広がっていることから、比較的距離が近い場所 にある宇土および益城については、越境汚染の影響が 同程度であったと推測された。古澤ら⁹によると, 熊 本県中心部では、地域汚染による NH3と、越境汚染に よる HNO₃ が反応して硝酸アンモニウム (NH₄NO₃) が 生成すると報告している。NH3の発生源は主に農業の 肥料施肥や畜産業の糞尿であるため、農業・畜産業が 盛んな熊本県の県北・県央地域に近い益城が、宇土に 比べて NH₃の汚染を強く受けていたと推測された。本 研究の解析期間とは異なるが、筆者らは 2015 年の 1/23~2/3 に宇土および益城でフィルターパック法によ る調査を行っており、その結果(表 4)では、益城の NH₃濃度(2.99µg/m³)は宇士(0.88µg/m³)の3倍以上 の濃度であった。全国環境研協議会第5次酸性雨調査 結果²¹⁾によると、2015年1月~2月のNH₃平均濃度 は,最大値;3326.1nmol/m³,中央値;48.2nmol/m³,最 小値; 2.8nmol/m³ であり, 益城の 2.99µg/m³ (175.9nmol/m³) は全国の平均的な濃度よりも高い値 であった。また、九州の NH₃ 濃度は、17.7nmol/m³~

95.3nmol/m³であり、九州内でも益城の NH₃ 濃度は高 い値であった。この結果は、前述の NH₃ 汚染の程度が 地域により異なるという議論を支持する内容であった。 これらのことから、益城では宇土と比べて NH₃ が多量 に存在しており、越境汚染時には HNO₃ と反応して多 くの硝酸アンモニウムを生成することが、宇土と益城 における 2 次生成硝酸塩+塩化物濃度に差が見られた 要因だと推測された。

このように、CMAQ および PMF の発生源寄与の比 較から、越境汚染の影響については 2 つのモデルで有 意な相関がみられ、両モデルの妥当性が支持された。 地域汚染由来の硝酸塩の影響について 2 つのモデルで 概ね一致しており、硝酸塩の挙動は NH₃濃度の違いを 反映していた。一方で、地域汚染由来の炭素成分につ いては CMAQ の計算結果が十分ではないため比較す ることができなかった。また、土壌成分についても 2 つのモデルで比較することは難しかったため、これら の因子の比較については今後の研究に期待したい。

まとめ

領域気象モデル WRF と化学輸送モデル CMAQ を用 いて,熊本における PM_{2.5}の発生源寄与解析を行った。 この結果と PMF による発生源寄与解析の結果を比較 したところ,以下のことが分かった。

- ・CMAQの感度解析結果とPMFの結果を比較したところ、国外と2次生成硫酸塩、石油燃焼および海塩 (クロリンロス)について相関がみられた。また、 九州と2次生成硝酸塩+塩化物に相関がみられたが、 宇土と益城では相関係数に大きな違いがあり、地域 汚染の影響が示唆された。。
- ・2 次生成硝酸塩+塩化物は地域汚染と考えられるが, 越境汚染が強い期間であった 1/30~2/4 は益城に比

べて宇土の因子濃度が低く,地点間で違いがみられた。

 ・益城は宇土よりも NH3の地域汚染が強く、このことが硝酸アンモニウムの生成を進めており、2 次生成 硝酸塩+塩化物因子の濃度挙動が、宇土と益城で違う原因であると推測された。

参考文献

- 兼保直樹,佐藤圭,高見昭憲,秀森丈寛,松見豊, 山本重一:エアロゾル研究,29(\$1),82-94(2014).
- 鈴木亮太,吉野彩子,兼保直樹,高見昭憲,林政 彦,原圭一郎,渡辺泉,畠山史郎:大気環境学会 誌,49(1),15-25(2014).
- 3) 鵜野伊津志, Xiaole Pan, 板橋秀一, 弓元桂也, 原由香里, 栗林正俊, 山本重一, 下原孝章, 田村 圭, 緒方美治, 長田和雄, 上口友輔, 山田早紀, 小林拓: 大気環境学会誌, 51, 44-57 (2016).
- 豊永悟史,出納由美子,北岡宏道:熊本県保健環 境科学研究所報,44,57-66 (2015).
- 5) 大気環境学会要旨集, 57, 73-90 (2016).
- 豊永悟史,出納由美子,北岡宏道,村岡俊彦:大 気環境学会誌,52,150-165(2017).
- Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. D., Barker, D. M., Duda, M. G., Huang, X-Y., Wang, W., Powers, J. G. : Natl. Cent. for Atmos. Res., Boulder, Colorado, USA, 113 (2008) .
- Byun, D. W., Schere, K. L. : Appl. Mech. Rev., 59, 51-77 (2006) .
- 9) 古澤尚英,板橋秀一,豊永悟史,村岡俊彦:大気 環境学会誌,投稿中.
- 10) 板橋秀一,速水洋:大気環境学会誌,51,197-217 (2016).
- 茶谷聡,森川多津子,中塚誠次,松永壮:大気環 境学会誌,46,101-110(2011).
- 12) Pant, P., Harrison, R. M. : *Atoms. Environ.*, **49**, 1-12 (2012) .
- 環境省水・大気環境局:微小粒子状物質(PM_{2.5})の成分分析ガイドライン(2011), http://www.env.go.jp/air/osen/pm/ca/110729/no_110 729001b.pdf(2017.8.27アクセス).
- 14) 環境省水・大気環境局:大気中微小粒子状物質
 (PM_{2.5}) 測定マニュアル (2012),
 http://www.env.go.jp/air/osen/pm/ca/manual.html
 (2017.8.27 アクセス).

- 15) 環境省:環境大気常時監視マニュアル第6版, https://www.env.go.jp/air/osen/manual_6th/ (2017.8.27 アクセス).
- 16) 気象庁:過去のデータ・ダウンロード, http://www.data.jma.go.jp/gmd/risk/obsdl/index.php (2017.8.27 アクセス).
- 17)第5次酸性雨全国調査報告書(平成25年度), http://tenbou.nies.go.jp/science/institute/region /journal/JELA_4003002_2015.pdf(2017.8.27ア クセス).
- 18) Boylan, J. W., and Russel A. G. : *Atmos. Environ.*,
 40, 4946-4959 (2006) .
- Itahashi, S., Uno, I., Osada, K., Kamiguchi, Y., Yamamoto, S., Tamura, K., Wang, Z., Kurusaki, Y., Kanaya, Y. : *Atmos. Chem. Phys.*, **17**, 3823-3843 (2017) .
- 20) 気象庁:日々の天気図, http://www.data.jma.go.jp/fcd/yoho/hibiten/index.ht ml (2017.8.27 アクセス).
- 21) 国立環境研究所全国酸性雨データベース 第5 次調査データセット, http://db.cger.nies.go.jp/dataset/acidrain/ja/05/index. html (2017.9.11アクセス).

謝辞

本研究を行うに当たり,九州大学応用力学研究所の 鵜野教授には有益な情報を多数いただきました。ここ に記して感謝申し上げます。