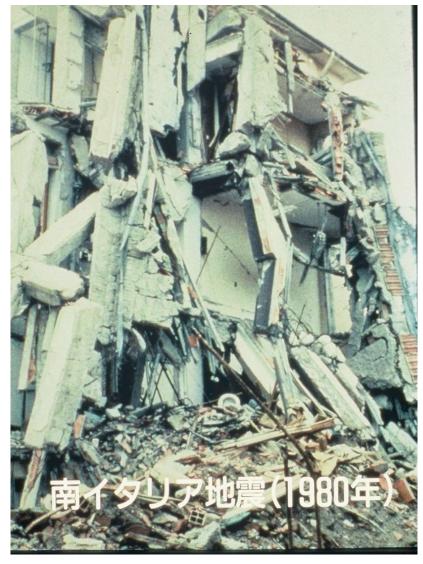
被災建築物 応急危険度判定士講習会

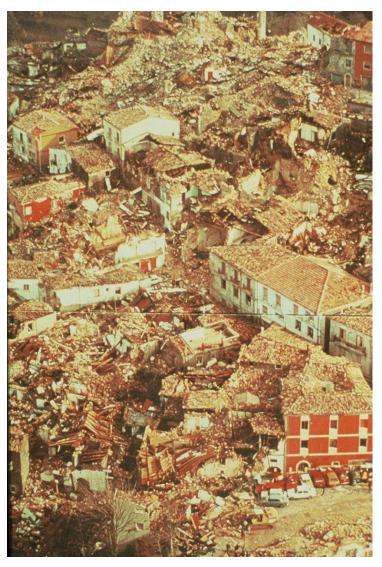
第 I 編 応急危険度判定基準

第I編 応急危険度判定基準

- ●応急危険度判定の経緯
- ●応急危険度判定基準の目的
- ●適用範囲
- ●用語
- ●調査方法
- ●判定方法
- ●判定内容による対応
- ●判定の変更

1. 応急危険度判定・被災度区分判定の経緯


- ・1981年新耐震基準の制定
 - →新築建築物は恩恵を受け、一定の耐震性能を確保


・既存建築物の耐震性能を確保するための耐震診断・耐震改修を全ての建築物に実施することが現実的でない状況では、被災建築物の地震対策が必要

- 応急危険度判定…被災建築物の地震対策の一環
- 1980年イタリア南部地震で必要性が認識される (政府、東京都、静岡県の調査報告書)

1980年イタリア南部地震

住民から建築物使用の可否の問い合わせ
⇒応急危険度判定の必要性の認識

1. 応急危険度判定・被災度区分判定の経緯

http://www.kenchiku-bosai.or.jp/oq/oqindex05.htmlより

- ●応急危険度判定:余震による二次災害を防ぐために地震 発生後できるだけ迅速に行われる被災度の判定
- ●過去には、行政担当者、建築士、学識経験者などにより それぞれ独自の判断で個別に行われてきた
- ●判定を独自に行なうのは、経験と直感で被災建物の安全や 危険を短時間に判定しなければならず簡単ではない
- ●災害の規模が小さい時は個別判定でよいが、規模が大きいと判定が必要な建物数も多くなり個別対応では困難
- ●震後の被災建物の危険度の判定を、予め用意されたマニュアルにより、トレーニングされた技術者により組織的に行うシステムの必要性が1980年頃より認識される

応急危険度判定・被災度区分判定の歴史

年 代	摘 要	実施主体
1980年	イタリア南部地震において応急危険度判定試行	イタリア
1981年	総プロ「震後建築物の復旧技術の開発」の作成	日本
	応急危険度判定、被災度区分判定の原案	日本
1985年	メキシコ地震で上記原案を用いて判定実施	JICA日本チーム
	応急危険度判定の開発開始	アメリカ
	応急危険度判定基準(ATC-20)を作成	アメリカ
1989年	ロマプリエータ地震で応急危険度判定の適用	アメリカ(サンフランシス コ)
1991年	震災建築物等の被災度判定基準および復旧技術 指針の発刊	日本建築防災協会
1992年	応急危険度判定士制度の発足	静岡県、神奈川県
1994年	ノースリッジ地震において応急危険度判定の実 施	アメリカ(ロスアンゼルス 市、サンタモニカ市)
	三陸はるか沖地震において被災度判定の試行	八戸市
1995年1月	兵庫県南部地震において応急危険度判定の実施	神戸市他

応急危険度判定・被災度区分判定の歴史

年 代	摘 要	実施主体
1980年	イタリア南部地震において応急危険度判定試行	イタリア
1981年	総プロ「震後建築物の復旧技術の開発」の作成	日本
	応急危険度判定、被災度区分判定の原案	日本
1985年	メキシコ地震で上記原案を用いて判定実施	JICA日本チーム
	応急危険度判定の開発開始	アメリカ
	応急危険度判定基準(ATC-20)を作成	アメリカ
1989年	ロマプリエータ地震で応急危険度判定の適用	アメリカ(サンフランシスコ)
1991年	震災建築物等の被災度判定基準および復旧技術 指針の発刊	日本建築防災協会
1992年	応急危険度判定士制度の発足	静岡県、神奈川県
1994年	ノースリッジ地震において応急危険度判定の実 施	アメリカ(ロスアンセ`ルス 市、サンタモニカ市)
	三陸はるか沖地震において被災度判定の試行	八戸市
1995年1月	兵庫県南部地震において応急危険度判定の実施	神戸市他

総プロ「震災構造物 の復旧技術開発」 震災復旧技術研究 開発建築委員会

建築物の震災復旧技術マニュアル(案) 木造 鉄骨造 鉄筋コンクリート造 宅地 1987年発刊

監修 建設省

建設省住宅局建築指導課監修

兵庫県南部地震に使用

震災建築物等の

被災度判定基準および復旧技術指針

(鉄骨造編)

震災建築物等の

被災度判定基準および復旧技術指針

(鉄筋コンクリート造編)

震災建築物等の

被災度判定基準および復旧技術指針

(木 造 編)

3種類の構造と宅地 計4種類の調査表 総プロ「既存耐震基準改訂 等委員会」で再検討

1991年発刊

財団法人 日本建築防災協会

応急危険度判定・被災度区分判定の歴史

年 代	摘 要	実施主体
1980年	イタリア南部地震において応急危険度判定試行	イタリア
1981年	総プロ「震後建築物の復旧技術の開発」の作成	日本
	応急危険度判定、被災度区分判定の原案	日本
1985年	メキシコ地震で上記原案を用いて判定実施	JICA日本チーム
	応急危険度判定の開発開始	アメリカ
	応急危険度判定基準(ATC-20)を作成	アメリカ
1989年	ロマプリエータ地震で応急危険度判定の適用	アメリカ(サンフランシス コ)
1991年	震災建築物等の被災度判定基準および復旧技術 指針の発刊	日本建築防災協会
1992年	応急危険度判定士制度の発足	静岡県、神奈川県
1994年	ノースリッジ地震において応急危険度判定の実 施	アメリカ(ロスアンセ`ルス 市、サンタモニカ市)
	三陸はるか沖地震において被災度判定の試行	八戸市
1995年1月	兵庫県南部地震において応急危険度判定の実施	神戸市他

1. 応急危険度判定・被災度区分判定の経緯

応急危険度判定・被災度区分判定の歴史

年 代	摘 要	実施主体
1995年12月	新潟県北部地震において応急危険度判定の実施	新潟県笹神村
1996年4月	全国被災建築物応急危険度判定協議会設立	(以下「全国協議 会」)
1996年8月	宮城県北部地震において応急危険度判定の実施	鳴子市
1997年 3月、5月	鹿児島県薩摩地方を震源とする地震において応 急危険度判定の実施	鹿児島県宮之城町、 鶴田町
1998年1月	被災建築物応急危険度判定マニュアルの発刊	日本建築防災協会 全国協議会
1998年7月	民間診断士に対する補償制度を運用開始	全国協議会
1999年9月	初めて全国規模での連絡訓練を実施	全国協議会
1999年9月	トルコ・マルマラ地震において、建築物危険度 診断(応急危険度判定)専門家が派遣され、危 険度診断実施に関する技術支援を実施	建設省、兵庫県、 大阪府等
1999年10月	台湾・集集地震において、建築危険度判定(応 急危険度判定)専門家が派遣され、危険度診断 実施に関する技術支援を実施	建設省、兵庫県大阪府等

被災建築物応急危険度判定マニュアル

被災建築物 応急危険度判定マニュアル

財団法人 日本建築防災協会全国被災建築物応急危険度判定協議会

1. 応急危険度判定・被災度区分判定の経緯

応急危険度判定・被災度区分判定の歴史

年 代	摘 要	実施主体
2000.12	鳥取県西部地震において応急危険度判定の実施	米子市、境港市他
2001.3	芸予地震において応急危険度判定の実施	広島市、呉市他
2001.9	震災建築物の被災度区分判定基準および復旧技術指 の改定	日本建築防災協会
2003.7	宮城県北部地震において応急危険度判定の実施	宮城県矢本町、 鳴瀬町他
2004.10	新潟県中越地震において応急危険度判定の実施	長岡市、小千谷市他
2005.3	福岡県西方沖地震において応急危険度判定の実施	春日市他
2007.3	能登半島地震において応急危険度判定の実施	七尾市、輪島市他
2007.7	新潟県中越沖地震において応急危険度判定の実施	柏崎市、出雲崎市、 刈羽村他
2011.3	東北地方太平洋沖地震等において応急危険度判定実施	仙台市他
2016.4	熊本地震において応急危険度判定実施	熊本市他
2018.6	大阪府北部地震において応急危険度判定実施	茨木市他
2018.9	北海道胆振東部地震において応急危険度判定実施	札幌市世
2021.2 2024.1	福島県沖地震において応急危険度判定実施 能登半島地震において応急危険度判定実施	福島市他 輪島市、能登町他

落下危険物・転倒危険物に関する危険度

2018年に発生した大阪府北部を震源とする地震においては、国交省から実施主体に対して、ブロック塀等の調査を徹底するよう通知

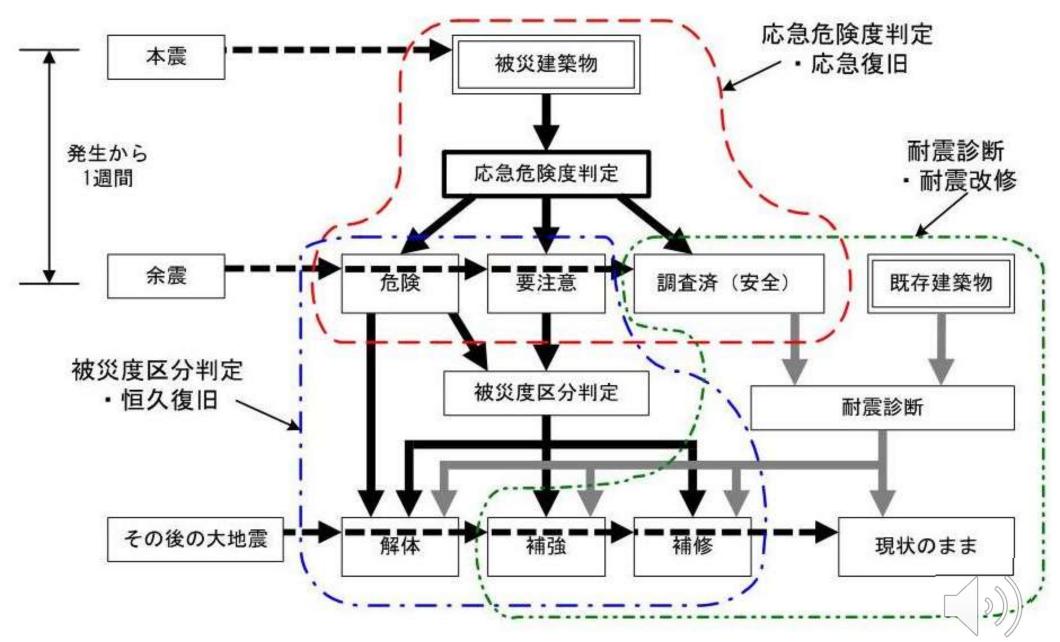
出典 第26回建築物等事故・災害対策部会 配布資料 資料 1 https://www.mlit.go.jp/policy/shingikai/house05_sg_000228

1. 応急危険度判定・被災度区分判定の経緯

応急危険度判定基準の目的

地震等により被災した建築物について

- ①余震等による倒壊や落下物の危険性を判定
- ②被災建築物の使用にあたっての危険性に 関する情報を提供
- ③人命に関わる二次災害を防止


- 建築物の安全性を確保する第一義的責任は 所有者(管理者・占有者)
- ・地震被害が大きい or 多数の所有者がいる建築物 →所有者が安全性を確認できる保証はない
- ・余震等による二次災害の恐れや第三者への被害
- ⇒市民の安全確保の観点から行政による対応が必要

市町村が、地震発生直後の**応急対応の一環**として被災建築物の判定を**応急的に実施**

- ●応急危険度判定とは
- 災害対策本部内に設置された被災建築物応急 危険度判定実施本部により、建築物等に対して 行われる建築技術の専門的見地による応急的な 調査及び情報提供等の対応。
- →恒久復旧に向けての判定ではない

(参考)被災度区分判定基準 被災による損害額の査定・被災建築物の恒久的 使用の可否の判定等の目的で実施

建築物の地震対策の流れ

http://www.mlit.go.jp/sogoseisaku/inter/keizai/gijyutu/pdf/risk_judge_j_02.pdf

・判定の性格上、本基準としては、あくまで余震は本震より小さいものとして危険度を判定 (過去の地震において例外は複数ある)

・余震等によって破壊が進展し、危険度の判定が 変更される可能性がある事態が発生した場合は、 再度、応急危険度判定を実施すること

・応急危険度判定では、余震以外の現象に起因する 建築物の崩壊の危険性についても注意する

- (例)・傾斜地の建築物
 - ⇒地割れ等に降雨による雨水が浸透する ことによる斜面崩壊の危険性
 - ・被災直後における台風・降雪の影響
 - ⇔風荷重、雪荷重

判定に考慮する必要がある

- ・被災後に避難所として使用される施設: 安全性の検討はより慎重・細部にわたり 実施する必要がある。
- ・本基準は外観調査に重点を置いた応急的な 危険度判定である。
- ・本基準の適用にあたっては、上記の前提を踏まえて、より詳細に検討する必要がある。構造躯体+ライフライン等の安全性・使用性

適用範囲

●地震被害を受けた

通常の、木造(W造)、鉄骨造(S造)、 鉄筋コンクリート造(RC造)及び鉄骨 鉄筋コンクリート造(SRC造)

●判定方法は構造種別ごと

●危険物貯蔵庫は適用外

適用範囲

<本基準>

- ●本震後の余震等による倒壊等の危険性を判定 するもの
- ●その他の原因によって被害を受けた建築物の 危険度判定には原則適用しない。(例)強風を受けた建物の危険度判定…×
- ●地震被害後の強風の影響については考慮する

適用範囲

在来の通常構法によっていない建築物は対象外

(例) 10階を超える建築物 大スパン、立体トラス、吊り構造等

補強コンクリートブロック造 プレキャストコンクリート造 (接合部を柱と読み替え判定)

プレファブ構法、枠組壁工法、 伝統工法 RC造の調査表

基準の精神を 汲み取り慎重

混構造:構造種別毎に判定⇒結果に基き総合判定

3. 用語の定義

応 急:暫定的+緊急

危険度:構造躯体の危険度

+建築物の部分等の落下・転倒の危険度

「危険」、「要注意」、「調査済」

被災度 :破壊または変形している度合い

(被害の小さい順に)A, B, C

損傷度: RC、SRC部材の破壊の程度

(破壊の小さい順に)レベル I 、 II 、 II 、 IV 、 V

3.用語

「応急」

●緊急性

被害を生じさせた地震の直後に、短時間に多くの判定をしなければならない意味

●暫定性

判定には必ずしも十分な調査検討がなされない ため、後に十分な時間をかけて被害調査が行わ れた場合に、判定結果が異なる場合がある意味

3. 用語

「調査済」(危険度の判定)

- ・建築物の恒久的な使用を保証している誤解を 生むことがないよう「安全」ではなく「調査済」
- ・外観調査を主とした限られた範囲の応急危険度 判定では、建築物の「安全」を保証できる程の 調査判定が行われているわけではなく、調査し た内容の中に「危険」又は「要注意」とする要 因がないことを確認しているのみ

4. 調查方法

●調査を実施するのは有資格者(判定士)

●主として外観目視による調査
外観で被害が観られない場合→内観も実施

●簡単な計器等を使用

●判定調査表を使用

4. 調查方法

(1)調査を実施するのは有資格者(判定士)

技術講習を受講、都道府県に登録された建築技術者

- (2) 主として外観目視による
- ・外観で被害が観られない場合→内観調査も実施
- ・所有者に対するヒアリングに基づく調査も可能
- (3) 簡単な計器等を使用

コンベックス、下げ振り、クラックスケール等

4. 調查方法

(4) 構造種別がわからない場合の判断の目安

(例)

RC造? or SRC造? ⇒ 8F以上ならSRCと判断

S造? or RC造? ⇒ 打撃音で判断

W造?or S造? ⇒ 屋根形状で分からない なら木造

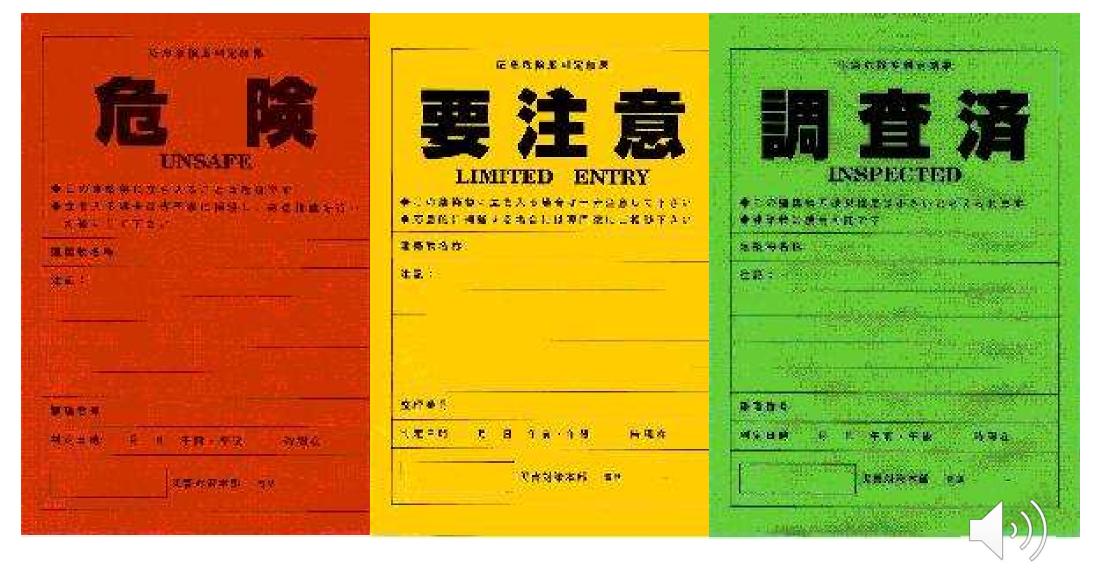
5. 判定方法

1. ①建築物と②落下物に分けて危険度を判定

<注>判定基準は構造種別で微妙に異なる

①建築物の危険度 : 危険、要注意、調査済

②落下転倒物の危険度:危険、要注意、調査済



構造別危険度判定の基準

		危険	要注意	調査済
	W	・Cランク有り	・Bランク有り	・Aランクのみ
(1) 建築 (2)	S	・Cランク有り or ・Bランク≧ 4 個所	・Bランク有り Bランク≦3個所	・Aランクのみ
物 	R C + s R C	・Cランク有り or ・Bランク≧ 2 個所	・Bランク有り Bランク=1個所	・Aランクのみ
②落 転侄		Cランク有り	Bランク有り	Aランクの。

6. 判定内容による対応

●応急危険度判定ステッカー

6. 判定内容による対応

- ●判定ステッカーの貼付
- ・建築物の所有者,使用者,及び第3者に危険 を分かり易く知らせる役割
- ・危険の内容
- ・危険な範囲、注意事項(わかりやすく記載)
- ・口頭で済む場合もあり。
- ・建築物が極めて危険な状態の場合や第3者に危険な場合は行政上の措置が取られることを

6. 判定内容による対応

- ●貼付場所
- ・建築物:出入り口の目立つ場所
- 落下物、転倒物:

危険個所付近の目立つ場所

- ●危険な範囲
- ・建築物:傾斜している場合、傾斜している側
 - の建物高さと同じ距離まで
- ・落下物:取り付けてある位置からの落下高さ の1/2の距離くらいまで

7. 判定の変更

- ●危険を防ぐ為の有効な手段が講じられた場合
- ●詳細な調査により、判定結果が変わった場合 応急危険度判定:短時間に行うもの
 - ・後に詳細調査が実施され、当初の 判定と異なる判定となる場合
 - ・新たに危険個所が発見される場合
 - ・危険と判断したものが、さほど危険でない 事が判明する場合
- ●余震等で被災状況が変わった場合

